organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. Thamarai Selvi,^a K. Chinnakali,^a† S. Nanjundan,^b C. S. Jone Selvamalar,^b Anwar Usman^c and Hoong-Kun Fun^c*

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Chemistry, Anna University, Chennai 600025, India, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

† Additional correspondence author, email: kali@annauniv.edu.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.088 wR factor = 0.217 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

1-(4-Aminophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one

In the title molecule, $C_{17}H_{17}NO_3$, the configuration of the keto group with respect to the olefinic double bond is s-*cis*. The dihedral angle between the two aromatic rings is 9.5 (2)°. Both the H atoms of the amino group are involved in N-H···O hydrogen bonding to form molecular layers parallel to the (100) plane. The layers are stacked along the *b* axis and are interlinked by C-H··· π and C-H···O interactions.

Comment

Chalcones and their heterocyclic analogues exhibit antiinflammatory, antitumour (Shibata, 1994; Xia *et al.*, 2000), antibacterial, antifungal (Gafner *et al.*, 1996; Popova *et al.*, 2001), antituberculous, antiviral, antiprotozoal and gastroprotective (Opletalova & Sedivy, 1999) activities. The different bioactivities of a variety of chalcones have been reviewed by Dimmock *et al.* (1999). Hydroxychalcones can be readily reacted with acryloyl and methacryloyl chloride to obtain acrylate and methacrylate monomers, which are useful for the preparation of photo-cross-linkable polymers (Subramanian *et al.*, 2001; Balaji & Nanjundan, 2002). The structure determination of the title compound, (I), was undertaken as part of our study of chalcones.

In the title molecule, the keto group is in the s-cis configuration with respect to the olefinic double bond [C7-C8-C9-O1 = -4.0 (6)°; Fig. 1]. The methoxy groups are coplanar with the attached ring $[C17-O3-C4-C5=0.1 (6)^{\circ}$ and $C16-O2-C3-C2 = -2.7 (6)^{\circ}$]. The molecule is slightly distorted from planarity, the dihedral angle between the two aromatic rings being 9.5 (2)°. The bond lengths and angles are comparable to those reported for related structures (Raj et al., 1996, 1997; Jeyabharathi et al., 2002; Ravishankar, Chinnakali, Nanjundan, Radhakrishnan et al., 2003; Ravishankar, Chinnakali, Nanjundan, Jone Selvamalar et al., 2003). The short H5...H8 (2.23 Å) and H8...H11 (2.11 Å) contacts result in the widening of the C6-C7-C8 [129.3 (4)°] and C9-C10-C11 [124.6 (3) $^{\circ}$] angles, respectively, from 120 $^{\circ}$. The narrowing of the O2-C3-C4 [115.8 (3) $^{\circ}$] and O3-C4-C3 [115.4 (3) $^{\circ}$] angles and the resultant widening of the O2-C3-C2 $[124.9 (4)^{\circ}]$ and O3-C4-C5 $[125.1 (4)^{\circ}]$ angles from normal

Received 2 July 2003 Accepted 9 July 2003 Online 17 July 2003 values are a result of the close $H \cdot \cdot \cdot H$ contacts $(H2 \cdots H16B = 2.31 \text{ Å}, H2 \cdots H16C = 2.27 \text{ Å}, H5 \cdots H17B =$ 2.34 Å and $H5 \cdots H17C = 2.23$ Å). Similar features have been previously reported for related structures (Ravishankar, Chinnakali, Nanjundan, Radhakrishnan et al., 2003; Ravishankar, Chinnakali, Nanjundan, Jone Selvamalar et al., 2003).

In the crystal structure, molecules translated by one unit along the b axis are linked by $N1-H1A\cdots O1^{i}$ hydrogen bonds to form chains (symmetry codes are given in Table 2). The adjacent symmetry-related chains are interlinked by N1- $H1B \cdots O2^{n}$ hydrogen bonds to form molecular layers parallel to the (100) plane (Fig. 2). This layer structure is further stabilized by $C-H\cdots O$ interactions (Table 2), whose geometry agrees with those reported by Jeffrey (1997) and Desiraju & Steiner (1999). The N-H···O and C-H···O hydrogen bonds in a layer generate rings of graph set motifs $R_2^2(9)$ and $R_3^2(7)$ (Etter *et al.*, 1990). The layers are stacked alternately at distances of 3.501 (6) and 3.538 (6) Å along the b axis. Adjacent layers are linked by $C-H \cdots \pi$ and $C-H \cdots O$ interactions (Table 2). No significant $\pi \cdots \pi$ interaction is observed between the benzene rings of adjacent layers.

Figure 1

A view of the title molecule, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the molecular layer, showing N-H···O hydrogen bonds and $C-H \cdot \cdot \cdot O$ interactions.

Experimental

The title compound was prepared by stirring an alcoholic solution of 3,4-dimethoxybenzaldehyde with 4-aminoacetophenone in the presence of 10% sodium hydroxide for 3 d at 273-283 K. The crude, filtered and washed product was recrystallized from a 1:1 ethylacetate/chloroform mixture.

Crystal data	
C ₁₇ H ₁₇ NO ₃	$D_x = 1.254 \text{ Mg m}^{-3}$
$M_r = 283.32$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2797
a = 13.856 (2) Å	reflections
b = 8.8243 (13) Å	$\theta = 2.7 - 28.3^{\circ}$
c = 24.775 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 97.630(3)^{\circ}$	T = 293 (2) K
V = 3002.4 (8) Å ³	Block, yellow
Z = 8	0.44 \times 0.40 \times 0.36 mm
Data collection	
Siemens SMART CCD area-	$R_{\rm int} = 0.034$
detector diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
ω scans	$h = -15 \rightarrow 16$
7214 measured reflections	$k = -10 \rightarrow 9$
2644 independent reflections	$l = -29 \rightarrow 21$
1787 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.088$	$w = 1/[\sigma^2(F_o^2) + 6.2455P]$
$wR(F^2) = 0.217$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.20	$(\Delta/\sigma)_{\rm max} < 0.001$
2644 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O1-C9	1.231 (4)	O3-C17	1.429 (5)
O2-C3	1.364 (4)	N1-C13	1.355 (5)
O2-C16	1.421 (5)	C7-C8	1.308 (5)
O3-C4	1.359 (4)		
O2-C3-C2	124.9 (4)	O3-C4-C3	115.4 (3)
O2-C3-C4	115.8 (3)	C8-C7-C6	129.3 (4)
O3-C4-C5	125.1 (4)	C11-C10-C9	124.6 (3)
C16-O2-C3-C2	-2.7 (6)	C7-C8-C9-O1	-4.0 (6)
C17-O3-C4-C5	0.1 (6)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1^{i}$	0.86	2.15	2.995 (5)	166
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.86	2.40	3.176 (5)	151
C7-H7···O1	0.93	2.45	2.799 (5)	102
C15-H15···O1	0.93	2.47	2.780 (5)	100
$C14-H14\cdots O3^{ii}$	0.93	2.63	3.490 (5)	154
$C16-H16A\cdotsO1^{iii}$	0.96	2.95	3.891 (5)	168
$C16-H16A\cdots O3^{iv}$	0.96	2.98	3.518 (6)	117
$C16-H16C\cdotsO1^{v}$	0.96	2.87	3.758 (6)	155
$C17 - H17C \cdots O1^{vi}$	0.96	2.73	3.513 (6)	139
$C17 - H17B \cdots Cg1^{vii}$	0.96	2.96	3.739 (6)	139

Symmetry codes: (i) x, 1 + y, z; (ii) x, 1 - y, $z - \frac{1}{2}$; (iii) x, $-y, \frac{1}{2} + z$; (iv) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$; (v) 1 - x, -y, 1 - z; (vi) $\frac{3}{2} - x$, $\frac{1}{2} - y$, 1 - z; (vii) 1 - x, 1 - y, 1 - z.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with aromatic C–H distances of 0.93 Å, methyl C–H distances of 0.96 Å and N–H distances of 0.86 Å. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for the methyl H atoms and at $1.2U_{eq}(C)$ for other C-bound H atoms; $U_{iso}(H)$ for the amino H atoms was set equal to $1.5U_{eq}(N)$. The 2θ maximum value was limited to 50° because of the large fraction of weak data at higher angles. The higher *R* and *wR* values may be a result of the weak data set.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship. HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/PFIZIK/610961.

References

- Balaji, R. & Nanjundan, S. (2002). J. Appl. Polym. Sci. 86, 1023-1037.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.

Etter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Gafner, S., Wolfender, J. L., Mavi, S. & Hostettmann, K. (1996). Planta Med.

- 62, 67–69. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York:
- Oxford University Press. Jeyabharathi, A., Ponnuswamy, M. N., Nanjundan, S., Fun, H.-K., Chandrapromma, S., Usman, A. & Razak, I. A. (2002). Acta Cryst. C58, o26–o28. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Opletalova, V. & Sedivy, D. (1999). Ceska. Slov. Farm. 48, 252–255.
- Popova, M., Bankova, V., Spassov, S., Tsvetkova, I., Naydenski, C., Silva, M. V. & Tsartsarova, M. (2001). Z. Naturforsch. Teil C, 56, 593–596.
- Ravishankar, T., Chinnakali, K., Nanjundan, S., Jone Selvamalar, C. S., Akilan, R., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, 01146–01148.
- Ravishankar, T., Chinnakali, K., Nanjundan, S., Radhakrishnan, S., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, 0138–0140.
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1996). Acta Cryst. C52, 3145–3146.
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1997). Acta Cryst. C53, 917–918.
- Sheldrick, G. M. (1997). *SHELXTL*. Verson 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shibata, S. (1994). Stem Cells, 12, 44-52.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Subramanian, K., Nanjundan, S. & Rami Reddy, A. V. (2001). *Eur. Polym. J.* **37**, 691–698.
- Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.